
MELTEC
Embedded DLL (Win32/AM64) for accessing UFT/UT-AT sensor devices

Preliminary data sheet, technical details are subject to change, rev. 20111215, ©2011 MELTEC Systementwicklung

Kölner Straße 39, 57250 Netphen, Tel. +49 2737 592717, www.meltec.biz

System requirements:

The dll file was designed for using with all current Windows operating system versions (2011). It is
implemented as a 32-bit and as a 64-bit dll, what makes it possible to use it in Windows XP, Vista and
Windows 7, including the 64-bit systems and also for Win32 and AM64 applications. All older
operating systems, also future systems that no longer will support Win32 or AM64 dll's, are not usable.

There is now not longer a need for installing a special device driver for the sensor devices because the
dll is now using the USB communication class device driver (CDC), which is included in all current
Windows versions.

Implementation of the dll functions:

Note: The dll functions are all implemented as multi-threaded and they must be synchronized with the
calling threads. After loading the dll, the list of the sensor devices is available after 150 ... 500
milliseconds in average.

Because of the multi-threaded implementation and the usage of the virtual COM ports, the count of
sensor devices, usable at same time, is limited to 50. The virtual COM ports must have a port number
between 1 and 999. But because of this the CDC class driver, included in any Windows version, can
be used and there should no further driver or compatibility problems occur. There is only a need for a
installation .inf file which tells the Windows operating system what driver to use for the given USB
vendor and device ID's. Also, 32-bit and 64-bit systems are supported. The dll is implemented on the
smallest common level of this all, so at a 32-bit dll.

The dll is exporting all functions of the previous, to support backwards compatibility. It also supports
explicit ASCII- and Unicode-calls now. The pre-processor definition "UNICODE" defines what type of
call is used. You always should ensure, that this is defined if you wish to use Unicode-calls.
Alternatively, you also can use the suffixes 'A' or 'W' at the end of the function names to specify what
call is used. For using the function names without the suffixes, automatically the ASCII code types are
used if 'UNICODE' is not defined. This is implemented for backwards compatibility also.

The dll is exporting the following functions:

Variant Function name Ordinal number (obsolete)

ASCII (alt)

 SensFindDevice @1

 SensReadValues @2

 SensSetHeating @3

 SensGetChangeFlag @4

 SensWaitReady @5

ASCII

 SensFindDeviceA @11

 SensReadValuesA @12

 SensSetHeatingA @13

 SensGetChangeFlagA @14

 SensWaitReadyA @15

Unicode

 SensFindDeviceW @21

 SensReadValuesW @22

 SensSetHeatingW @23

 SensGetChangeFlagW @24

 SensWaitReadyW @25

Default

 DllGetVersion @99

MELTEC
Embedded DLL (Win32/AM64) for accessing UFT/UT-AT sensor devices

Preliminary data sheet, technical details are subject to change, rev. 20111215, ©2011 MELTEC Systementwicklung

Kölner Straße 39, 57250 Netphen, Tel. +49 2737 592717, www.meltec.biz

Error codes:

Any function, which is returning a detailed error code, will use one of the following values:

Error code Value Description
SENS_HEATING_ENABLED 1 The function call was successful. No error has occurred, but the integrated

heating of the sensor device is activated. This leads to an significant
measurement value error, because the measured temperature value is not
valid.

SENS_SUCCESS 0 The function call was successful. No error has occurred.

SENS_FAILED -1 The call was not successful. A common failure has occurred. This e.g. may
happen, if an sensor access is performed while the sensor device is queried
by the device searching procedure and a timeout occurs.

SENS_NOT_FOUND -2 Attempt to access an not available sensor device, maybe using an invalid
serial number string or the device was already dismounted or there is not
additional device in device list found.

SENS_UNABLE_TO_OPEN -3 The dll is not available to open the access using the device driver. This may
e.g. happen, if the selected port is used by another application in between.

SENS_IO_ERROR -4 There has a communication error occurred between sensor device and PC.
If this error occurs, mostly a technical problem is the cause.

SENS_TYPE_NOT_SUPPORTET -5 The addressed device seems to be a MELTEC sensor device, but the type is
currently not supported by this dll.

SENS_DEVICE_NOT_READY -6 The addressed device is not ready now. This may happen after powering up
a sensor device on an attempt to query values before they are available.
Normally, the sensor devices will need some seconds until the first values
are available. It is also possible that no sensor head is connected to the
device.

SENS_RH_NOT_MEASURED -7 The humidity measure is currently not available, maybe it was not measured
yet.

SENS_TEMP_NOT_MEASURED -8 The temperature measure is currently not available, maybe it was not
measured yet.

SENS_INVALID_MEASUREMENT -9 The measure values are currently invalid. Maybe the sensor head is
currently not working correctly.

SENS_INVALID_FUNCTION -10 The function is not accessible. Maybe you've attempt to access a heating
element within an old sensor which don't support this.

MELTEC
Embedded DLL (Win32/AM64) for accessing UFT/UT-AT sensor devices

Preliminary data sheet, technical details are subject to change, rev. 20111215, ©2011 MELTEC Systementwicklung

Kölner Straße 39, 57250 Netphen, Tel. +49 2737 592717, www.meltec.biz

Function "SensFindDevice()":

Prototypes:

LRESULT CALLBACK SensFindDeviceA(LONG_PTR n, LPSTR pszMask, PSENSDEVICE pDevice);

LRESULT CALLBACK SensFindDeviceW(LONG_PTR n, LPWSTR pwszMask, PSENSDEVICE
pDevice);

Description:

The function searches the current device list for the device with the given index and fills a parameters
block with the device parameters of the found device. If a sensor defined with the given index is found,
the function returns SENS_SUCCESS, otherwise it returns SENS_NOT_FOUND. You can use a filter
string which to reduce the selection to special sensor devices. Not used parameters must be set to
NULL. To find all connected sensor devices, you can call this function inside a loop with an
incrementing index number, as LONG_PTR as the SENS_SUCCESS result code is returned.

Parameter: Type: Description:

n LONG_PTR Defines the index (n) of the searched device. The index starts with n=0. The function
returns the parameters of the first found device matching the given filter parameters. It
is searching all currently connected devices.

pszMask
pwszMask

LPSTR (ASCII)
LPWSTR (Unicode)

Pointer to a filter string or NULL. If the filter string pointer is valid, only devices are
found where the filter string is matching. The filter is matching, if the type-string of the
device contains the filter string somewhere.

pDevice PSENSDEVICE
PSENSDEVICEA
PSENSDEVICEW

Pointer to a buffer with the "SENSDEVICE" structure. If a valid pointer is given and
the query succeeded, the buffer is filled with the sensor device parameters.

Return value:

Type LRESULT, the function returns SENS_SUCCESS it the given device is found, otherwise it
returns SENS_NOT_FOUND.

The buffer for the device parameters consists of the following structure:

typedef struct _SENSDEVICEA Device entry, ASCII code version
{

TCHAR szTypeName[32]; Device type name string
TCHAR szSerialNo[32]; Device serial number string
LONG_PTR nIndex; Device index number

} SENSDEVICEA, * PSENSDEVICEA;

typedef struct _SENSDEVICEW Device entry, Unicode Version
{

WCHAR szTypeName[32]; Device type name string
WCHAR szSerialNo[32]; Device serial number string
LONG_PTR nIndex; Device index number

} SENSDEVICEW, * PSENSDEVICEW;

Notes: This function returns all relevant information from the currently connected devices. You can
use multiple calls with a incrementing index number to create a list of all connected devices. A
maximum of 50 devices is supported for one PC. The COM port numbers for the installed ports must
be between 1 and 999.

MELTEC
Embedded DLL (Win32/AM64) for accessing UFT/UT-AT sensor devices

Preliminary data sheet, technical details are subject to change, rev. 20111215, ©2011 MELTEC Systementwicklung

Kölner Straße 39, 57250 Netphen, Tel. +49 2737 592717, www.meltec.biz

Function "SensReadValues()":

Prototypes:

LRESULT CALLBACK SensReadValuesA(PVOID Parameter, BOOL bMode, float * pfValRH, float *
pfValTemp, float * pfValDew);

LRESULT CALLBACK SensReadValuesW(PVOID Parameter, BOOL bMode, float * pfValRH, float *
pfValTemp, float * pfValDew);

Description:

This function is used for querying the current measure values from a given device. Depending on the
type of the addressed device, up to three values are returned, e.g. for an UFT75-AT sensor the
relative humidity, the temperature and the dew point temperature. Values for the relative humidity are
typically between 0 and 100 %, the temperature and the dew point temperature between -40 and
+120°C (-40 and +248°F or between 233.15 and 393.14 K).

Parameter: Type: Description:
Parameter PVOID The content of the parameter is depending on the "bMode" variable. If "bMode" is

SENS_READ_BY_SERIAL_NUMBER, the parameter contains a pointer to a null-terminated serial
number string (ASCII or Unicode), which must contain the exact serial number of the addressed
sensor device. If "bMode" is SENS_READ_BY_INDEX, the parameter is the index number of the
device. It's the same index number as used while searching for the device.

bMode BOOL Given addressing mode for selecting the device (see "Parameter").

pfValRH float * Pointer to a float variable (IEEE 754, 32-bit) which receives the measurement value for the relative
humidity. The relative humidity value is possible between 0.0 and 100.0 and its unit is percent. If
this pointer is NULL, this parameter is ignored. If you attempt to access a sensor device which is
not supporting humidity measurements, the result is always 0.0.

pfValTemp float * Pointer to a float variable (IEEE 754, 32-bit) which receives the measurement value for the
temperature. The temperature value is possible between -40.0 and +120.0°C and its unit is in
°Celsius by default. If this pointer is NULL, this parameter is ignored. If you attempt to access a
sensor device which is not supporting temperature measurements, the result is always -40.0.

pfValDew float * Pointer to a float variable (IEEE 754, 32-bit) which receives the measurement value for the dew
point temperature. The dew point temperature value is possible between -40.0 and +120.0°C and
its unit is in °Celsius by default. If this pointer is NULL, this parameter is ignored. The dew point
temperature is normally not calculated inside the sensor device but in the PC. It is based on the
humidity and the temperature measurement so that these both values must be available. If it is not
possible to calculate the dew point temperature yet, the return value is always -40°C.

Return value:

Type LRESULT, the function returns an error code of the type "SENS_xxx“ as result.

Addressing modes: Value: Function:
SENS_READ_BY_SERIAL_NUMBER 0 The function parameter named "Parameter" contains a pointer to a

null terminated string which is the device serial number of the
addressed sensor device.

SENS_READ_BY_INDEX 1 The function parameter named "Parameter" contains the index
number of the addressed device as used for searching the device
using the function "SensFindDevice()". Please note that the index
number of a specific sensor device may change for other USB
configurations. Therefore it is recommended to use the serial
number string for addressing a device, because this is unique,
independently from the current USB configuration such as COM port
numbers

Notes: Not available humidity measure values are always returned as 0.0%, not available temperature
measure value are returned as -40.0°C. The dew point temperature is normally calculated by the PC,
what makes it necessary that the humidity value is available as well as the temperature value too.
Most of the sensor devices will need some seconds after powering up, until the values are available.

MELTEC
Embedded DLL (Win32/AM64) for accessing UFT/UT-AT sensor devices

Preliminary data sheet, technical details are subject to change, rev. 20111215, ©2011 MELTEC Systementwicklung

Kölner Straße 39, 57250 Netphen, Tel. +49 2737 592717, www.meltec.biz

Function "SensSetHeating()":

Prototypes:

LRESULT CALLBACK SensSetHeatingA(PVOID Parameter, BOOL bMode, BOOL bEnable);

LRESULT CALLBACK SensSetHeatingW(PVOID Parameter, BOOL bMode, BOOL bEnable);

Description:

Function for activating or deactivating the heating of a UFT75-AT sensor device, if the addressed
device is supporting this.

Parameter: Type: Description:
Parameter PVOID The content of the parameter is depending on the "bMode" variable. If "bMode" is

SENS_READ_BY_SERIAL_NUMBER, the parameter contains a pointer to a null-terminated serial
number string (ASCII or Unicode), which must contain the exact serial number of the addressed
sensor device. If "bMode" is SENS_READ_BY_INDEX, the parameter is the index number of the
device. It's the same index number as used while searching for the device.

bMode BOOL Given addressing mode for selecting the device (see "Parameter").

bEnable BOOL Flag gibt an, ob das Heizelement aktiviert (TRUE) oder deaktiviert (FALSE) werden soll.

Return value:

Type LRESULT, the function returns an error code of the type "SENS_xxx“ as result.

Possible addressing modes:

Addressing modes: Value: Function:
SENS_READ_BY_SERIAL_NUMBER 0 The function parameter named "Parameter" contains a pointer to a

null terminated string which is the device serial number of the
addressed sensor device.

SENS_READ_BY_INDEX 1 The function parameter named "Parameter" contains the index
number of the addressed device as used for searching the device
using the function "SensFindDevice()". Please note that the index
number of a specific sensor device may change for other USB
configurations. Therefore it is recommended to use the serial
number string for addressing a device, because this is unique,
independently from the current USB configuration such as COM port
numbers

Notes: Nur die UFT75-AT-Sensor-Geräten ab Firmware-Version 2.0.00 und höher unterstützen die
Heizung Funktionalität. Wenn diese Funktion für den Versuch, die Heizung eines Gerätes, die nicht
unterstützt wird die Heizung zu aktivieren verwendet wird, gibt es den Fehlercode
"SENS_INVALID_FUNCTION". Beim Aktivieren der Heizung gelungen, die Abfrage aufruft, mit der
"SensReadValues ()" Funktion, dann sind wieder die Status-Code "SENS_HEATING_ENABLED"
anstelle des "SENS_SUCCESS" code. In diesem Fall auch die Messwerte werden nicht richtig, weil
sie durch die Erwärmung beeinflusst wird.

MELTEC
Embedded DLL (Win32/AM64) for accessing UFT/UT-AT sensor devices

Preliminary data sheet, technical details are subject to change, rev. 20111215, ©2011 MELTEC Systementwicklung

Kölner Straße 39, 57250 Netphen, Tel. +49 2737 592717, www.meltec.biz

Function „ SensGetChangeFlag()“:

Prototypes:

BOOL CALLBACK SensGetChangeFlagA(VOID);

BOOL CALLBACK SensGetChangeFlagW(VOID);

Description:

This function returns TRUE, if something with the sensor configuration has changed since last time
calling this (new devices added or devices removed). If nothing has changed, it returns FALSE.

Parameter: Type: Description:
--- VOID No parameters.

Return Value:

Type BOOL. The function returns TRUE, if something with the sensor configuration has changed, e.g.
if some devices are connected or some are disconnected since the last call of this function. The ASCII
and the Unicode variants are identically but available both, for compatibility.

Notes: In the case, that the call of this function returns TRUE, it is strongly recommended that a new
device search is performed, using the "SensFindDevice()" function, in order to support added or
removed devices. The dll is automatically detecting new sensor devices if the operating system sends
an USB device changing event. The device detecting normally needs in between 150 to 500
milliseconds. the dll is supporting a maximum of 999 devices at same time, located at COM port 1 to
999. Sensor devices which are used by another thread while performing a device detection cycle, are
possibly not detected.

MELTEC
Embedded DLL (Win32/AM64) for accessing UFT/UT-AT sensor devices

Preliminary data sheet, technical details are subject to change, rev. 20111215, ©2011 MELTEC Systementwicklung

Kölner Straße 39, 57250 Netphen, Tel. +49 2737 592717, www.meltec.biz

Function „SensWaitReady()“:

Prototypes:

BOOL CALLBACK SensWaitReadyA(LONG nTimeout);

BOOL CALLBACK SensWaitReadyW(LONG nTimeout);

Description:

This function waits for finishing of a device detection cycle for a maximum time of the given timeout
value in milliseconds. It returns TRUE, if the device searching was finished within the given timeout
periode, or FALSE if a timeout occurs. The function may be used by application to synchronize with
the dll functions.

Parameter: Type: Description:
nTimeout BOOL Timeout value in milliseconds.

Return value:

Type BOOL. The function returns TRUE, if the device searching has finished within the given timeout
periode in milliseconds. It returns FALSE, if the device searching is still running if the given timeout
elapsed.

Notes: Because of the complete multi-threaded implementation of the dll functions, it is possible for a
application to query found devices while the device searching is still performed in the background. This
may cause problems if an application queries the found devices directly after staring it up, because the
device searching cycle has not finished at this time, and maybe none or not all really connected
devices are returned to the application. At this point the function "SensWaitRead()" can be used to
synchronize the device searching with the application. This multi-threaded implementation of the
device searching has a lot of advantages, e.g. is the application never blocked by any calling of a dll
function, or the device searching will always need nearly the same time, because all available COM
ports are queried parallel and all sensor devices should be found after 150 ... 500 milliseconds.

MELTEC
Embedded DLL (Win32/AM64) for accessing UFT/UT-AT sensor devices

Preliminary data sheet, technical details are subject to change, rev. 20111215, ©2011 MELTEC Systementwicklung

Kölner Straße 39, 57250 Netphen, Tel. +49 2737 592717, www.meltec.biz

Function „ DllGetVersion()“:

Prototype:

HRESULT WINAPI DllGetVersion(DLLVERSIONINFO * pDllVerInfo);

Description:

Function fills a Windows DLLVERSIONINFO structure with the version data of this dll.

Parameter: Type: Description:
pDllVerInfo DLLVERSIONINFO * Pointer to a buffer with the structure of DLLVERSIONINFO (see "Shlwapi.h".

Return value:

Type HRESULT, the function returns S_OK if it succeeded, or an error code (E_FAIL, E_...), see
"WinError.h".

The structure DLLVERSIONINFO is defined as follows ("Shlwapi.h"):

typedef struct _DLLVERSIONINFO
{
 DWORD cbSize;
 DWORD dwMajorVersion; // Major version
 DWORD dwMinorVersion; // Minor version
 DWORD dwBuildNumber; // Build number
 DWORD dwPlatformID; // DLLVER_PLATFORM_*

} DLLVERSIONINFO;

MELTEC
Embedded DLL (Win32/AM64) for accessing UFT/UT-AT sensor devices

Preliminary data sheet, technical details are subject to change, rev. 20111215, ©2011 MELTEC Systementwicklung

Kölner Straße 39, 57250 Netphen, Tel. +49 2737 592717, www.meltec.biz

Sample code:

The following sample code demonstrates in standard "C" language, how a Windows list box control is
filled with the currently connected UFT75-AT sensor devices. The second part shows how to read the
values using a timer event. The code is very similar to the function of the sample application
"UFTAccessTest.exe", but only particularly shown. Handling the user interface is not contained in the
sample code.

1st sample code, creating a list box which is viewing the connected sensor devices (simplified):

#include ... insert header files here
#include "UFTAccess.h"

VOID SetupMyListBox(HWND hWnd)
{
 SENSDEVICE DeviceInfo; /* sensor device info buffer */
 HWND hItem; /* list box window handle */
 LONG i; /* sensor device index */
 LONG Index; /* list box item index */

if(!SensWaitReady(500)) return; /* wait for dll ready */

 hItem = GetDlgItem(hWnd, /* query list box handle */
 IDC_SENSORLIST);

 SendMessage(hItem, /* init list box item */
 LB_RESETCONTENT, 0, 0L);

 ZeroMemory(&DeviceInfo, /* clear buffer */
 sizeof(SENSDEVICE));

 i = 0; /* begin with index 0 */

 while(SensFindDevice(i, 0L, &DeviceInfo) == SENS_SUCCESS)
 { /* if succeeded query */
 sprintf(szBuffer, "%s - %s", /* format list box entry */
 DeviceInfo.szSerialNo, DeviceInfo.szDeviceID);

 Index = SendMessage(hItem, /* add entry to list box item */
 LB_ADDSTRING, 0, (LPARAM)szBuffer);

 if(Index != LB_ERR) /* if succeeded */
 {
 SendMessage(hItem, /* set device index as param. */
 LB_SETITEMDATA, (WPARAM)Index, (LPARAM)i);
 }

 i++; if(i >= 999) break; /* next device, max. 999 */
 }

 SetDlgItemText(hWnd, IDC_VAL_RH, "---");
 SetDlgItemText(hWnd, IDC_VAL_TEMP, "---");
 SetDlgItemText(hWnd, IDC_VAL_DEW, "---");

 SetDlgItemText(hWnd, IDC_STATUS, "Preparing...");
}

MELTEC
Embedded DLL (Win32/AM64) for accessing UFT/UT-AT sensor devices

Preliminary data sheet, technical details are subject to change, rev. 20111215, ©2011 MELTEC Systementwicklung

Kölner Straße 39, 57250 Netphen, Tel. +49 2737 592717, www.meltec.biz

2nd sample code. This shows a timer event handler in the window callback function for reading
measure values of a selected sensor device or updating the device list box.

switch(Message) /* depending on message */
 {
 case WM_TIMER: /* for timer messages */
 {
 switch(wParam) /* depending on timer ID */
 {
 case 0x0001: /* on reading new values */
 {
 LRESULT Status; /* status code */
 BYTE szBuffer[256]; /* auxiliary buffer */
 HWND hItem; /* item handle */
 LONG Index; /* list box selection index */
 LPSTR p; /* auxiliary string pointer */
 float fValRH; /* humidity value */
 float fValTemp ; /* temperatur value */
 float fValDew; /* dew point value */

 hItem = GetDlgItem(hWnd, /* get list box window handle */
 IDC_SENSORLIST);

 Index = SendMessage(hItem, /* query current selection */
 LB_GETCURSEL, 0, 0L);

 if(Index == LB_ERR) return(FALSE); /* break, if no sensor selected */

 ZeroMemory(szBuffer, 256); /* clear buffer */

 SendMessage(hItem, /* read list box string */
 LB_GETTEXT, (WPARAM)Index, (LPARAM)szBuffer);

 p = strstr(szBuffer, " - "); /* get serial number */
 if(p) *p = 0;

 Status = SensReadValues((PVOID)szBuffer,
 SENS_READ_BY_SERIAL_NUMBER,

 &fValRH, &fValTemp, &fValDew);

 if(Status >= SENS_SUCCESS) /* if succeeded */
 {
 CheckDlgButton(hWnd, IDC_HEATING,
 (Status == SENS_HEATING_ENABLED) ? TRUE : FALSE);

 sprintf(szBuffer, "%5.1f %%RH", fValRH); /* format the humidity value */
 SetDlgItemText(hWnd, IDC_VAL_RH, szBuffer);

 sprintf(szBuffer, "%+5.1f °C", fValDew); /* format the dew point value */
 SetDlgItemText(hWnd, IDC_VAL_DEW, szBuffer);

 sprintf(szBuffer, "%+5.1f °C", fValTemp); /* format temperature value */
 SetDlgItemText(hWnd, IDC_VAL_TEMP, szBuffer);
 }
 }
 break;

 default:
 break;
 }
 }
 return(FALSE);

... continue

